Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 519(3): 597-604, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31540690

RESUMO

INTRODUCTION: Multiple myeloma (MM) remains incurable due to high rates of relapse after various treatment regimens. WEE1 is a cell cycle related gene that regulates the G2/M checkpoint and promotes cell cycle suspension for consequent DNA repair. To date, there are clinical studies for the evaluation of WEE1 inhibitors in the treatment of solid tumors and studies on cell lines of non-MM hematological tumors. OBJECTIVES: To perform in vitro functional studies to verify the effect of the inhibition of WEE1 on MM cell lines viability and its potential as therapeutic target. MATERIAL AND METHODS: WEE1 expression was evaluated in 22 newly diagnosed MM patients and in four MM cell lines, RPMI-8226, U266 and SKO-007 and SK-MM2, by quantitative real-time PCR (qPCR). After treatment with the WEE1 inhibitor (MK-1775), with or without proteasome inhibitor (bortezomib) pretreatment, we assessed cell viability through Prestoblue functional test, microspheres formation in soft agar, and induction of apoptosis and cell cycle alterations by flow cytometry. RESULTS: All MM cell lines showed WEE1 expression by qPCR. RPMI-8226 and U266 showed a 50% reduction in cell viability after 24 h of incubation with MK-1775, at concentrations of 5 µM and 20 µM, respectively. SKO-007 showed dose and time dependence to this drug. Combination therapy with bortezomib and MK-1775 abolished the formation of soft agar microspheres in the RPMI-8226 cell line (also responsive to the use of both drugs) and U266, but SKO-007 was resistant to all drugs, isolated and combined. However, treatment of bortezomib followed by MK-1775 (sequential treatment) versus bortezomib alone showed statistically significant impact on cell lines total apoptosis: 88.8% vs 74.1% in RPMI-8222 (confirmed by cell cycle experiments); 92.5% vs 86.6% in U266; and 60.2% 30.9% on SKO-007 (p < 0.05). CONCLUSION: The sequential combination of bortezomib and WEE1 inhibitor, MK-1775, induced apoptosis in RPMI-8226, U266, and especially SKO-007 cell lines, more efficiently than the use of the same isolated drugs, highlighting its effect in inhibition of proliferation of tumor cells in MM cell lines. Our data suggest that WEE1 can figure as a MM target and that the sequential combination of bortezomib and MK-1775 may be explored in future clinical trials.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Bortezomib/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinonas/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
2.
Cancer Lett ; 403: 206-215, 2017 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-28645562

RESUMO

JAK proteins have been linked with survival and proliferation of multiple myeloma (MM) cells; therefore, JAK inhibition could be a therapeutic strategy for MM. We evaluated JAK1 and JAK2 expression in MM patients and the effects of JAK/STAT pathway inhibition on apoptosis, cell cycle, gene and protein expression in RPMI-8226 and U266 MM cell lines. 57% of patients presented overexpression of JAK2 and 27%, of JAK1. After treatment with ruxolitinib and bortezomib, RPMI-8226 and U266 presented 50% of cells in late apoptosis, reduction of anti-apoptotic genes expression and higher number of cells in SubG0 phase. Co-culture with stromal cells protected RPMI-8226 cells from apoptosis, which was reversed by lenalidomide addition. Combination of ruxolitinib, bortezomib and lenalidomide induced 72% of cell death, equivalent to bortezomib, lenalidomide and dexamethasone, combination used in clinical practice. Many JAK/STAT pathway genes, after treatment, had their expression reduced, mainly in RPMI-8226, with insignificant changes in U266. In this scenario, JAK/STAT pathway could pose as a new therapeutic target to be exploited, since it is constitutively active and contributes to survival of MM tumor cells.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Bortezomib/farmacologia , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Pirazóis/farmacologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Talidomida/análogos & derivados , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Lenalidomida , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Nitrilas , Pirimidinas , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/patologia , Talidomida/farmacologia , Fatores de Tempo
3.
Biochim Biophys Acta ; 1862(6): 1105-10, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27032384

RESUMO

BACKGROUND: TP53 Regulated Inhibitor of Apoptosis 1 (TRIAP1) modulates apoptotic pathways preventing the formation of the apoptosome complex. Our group previous study showed that 90% of patients' multiple myeloma (MM) marrow-derived plasma cells present TRIAP1 overexpression as compared to normal plasma cells. Due to high prevalence and lack of information on TRIAP1's role in MM biology, we decided to explore the impact of TRAIP1 through stable gene silencing in MM cell lines and its effect on cell cycle and apoptosis. METHODS: TRIAP1 expression was examined in MM cell lines by quantitative real time PCR. Cell lines were submitted to transduction with lentiviral vector encoding a TRIAP1-specific short hairpin RNA (shRNA) and, as control, encoding a non-targeting shRNA (scramble). Apoptosis was assessed by flow cytometry with annexin V and propidium iodide staining (the later also used for cell cycle), APAF1 and Caspase 9 apoptosome related genes expression and Caspase 9 and Caspase 3/7 activity. RESULTS: RPMI8226 and U266 cell lines were chosen for transduction experiments since they present higher levels of TRIAP1 expression. Inhibition of TRIAP1 in RPMI8226 cells increased the percentage of apoptotic cells, accompanied by increased expression of APAF1 and Caspase 9, and Caspase 9 and Caspase 3/7 activity. Transduced U266 cell line did not show sustained inhibition of TRIAP1 expression nor apoptosis induction. CONCLUSION: Stable silencing of TRIAP1 induces late apoptosis through APAF1/Caspase 9 pathway at least in RPMI8226 cell line, suggesting that it could be exploited as a potential target at least for a subgroup of MM patients. GENERAL SIGNIFICANCE: In the present study, we demonstrated effects of TRIAP1 silencing on RPMI8226 MM cell line and established its mechanism mediated through APAF1 and Caspase 9. No relevant effect was found after gene silencing in U266 cell line.


Assuntos
Apoptose , Fator Apoptótico 1 Ativador de Proteases/genética , Caspase 9/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mieloma Múltiplo/genética , Ciclo Celular , Linhagem Celular Tumoral , Humanos , Mieloma Múltiplo/patologia , Regulação para Cima
4.
Oncotarget ; 7(4): 4806-16, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26683099

RESUMO

Despite advances in treatment, 30% of diffuse large B-cell lymphoma (DLBCL) cases are refractory or relapse after chemoimmunotherapy. Currently, the relationship between angiogenesis and angiomiRs in DLBCL is unknown. We classified 84 DLBCL cases according to stromal signatures and evaluated the expression of pro- and antiangiomiRs in paraffin embedded tissues of DLBCL and correlated them with microvascular density (MVD). 40% of cases were classified as stromal-1, 50% as stromal-2 and 10% were not classified. We observed increased expression of proangiomiRs Let-7f, miR-17, miR-18a, miR-19b, miR-126, miR-130a, miR-210, miR-296 and miR-378 in 14%, 57%, 30%, 45%, 12%, 12%, 56%, 58% and 48% of the cases, respectively. Among antiangiomiRs we found decreased expression of miR-16, miR-20b, miR-92a, miR-221 and miR-328 in, respectively, 27%, 71%, 2%, 44% and 11%. We found association between increased expression of proangiomiRs miR-126 and miR-130a and antiangiomiR miR-328 and the subtype non-GCB. We found higher levels of the antiangiomiRs miR-16, miR-221 and miR-328 in patients with low MVD and stromal-1 signature. IPI and CD34 confirmed independent impact on survival of the study group. None of the above angiomiRs showed significance as biomarker in an independent serum samples cohort of patients and controls. In conclusion, we confirmed association between antiangiomiRs miR-16, miR-221 and miR-328 and stromal-1 signature. Four angiomiRs emerged as potential therapeutic targets: proangiomiRs miR-17, miR-210 and miR-296 and antiangiomiR miR-20b. Although the four microRNAs seem to be important in DLBCL pathogenesis, they were not predictive of DLBCL onset or relapse in the serum independent cohort.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B/genética , MicroRNAs/genética , Neovascularização Patológica/genética , Feminino , Humanos , Técnicas Imunoenzimáticas , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Masculino , Microvasos/patologia , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real , Células Estromais/patologia , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...